2N176 (GERMANIUM) 2N669

PNP germanium power transistors for economical power switching circuits and commercial grade power amplifier applications.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Base Voltage	v _{cb}	40	Vdc	
Collector-Emitter Voltage	V _{CES}	30	Vdc	
Collector Current (Continuous)	^I C	3.0	Amp	
Storage and Junction Temperature	TJ, Tstg	-65 to +100	°C	
Total Device Dissipation (At 25°C Case Temperature)	PD	90	Watts	
Thermal Resistance (Junction to Case)	$^{ heta}$ JC	0.8	°C/W	

SAFE OPERATING AREAS

The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Case temperature and duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum TJ, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

2N176, 2N669 (continued)

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
		^I СВО		50 	3.0 — 20	mA μA mA
Emitter-Base Cutoff Current $V_{EB} = 10 V, I_C = 0$		I _{EBO}	—		2.0	mA
Collector-Emitter Breakdown Voltage $I_C = 330 \text{ mA}, R_{BE} = 10 \text{ Ohms}$	2N176 2N669	^{BV} CER BV _{CES}	30 30		·	Vdc
Collector-Emitter Saturation Voltage $I_C = 3 A$, $I_B = 300 mA$		V _{CE(SAT)}	_	_	0.4	Vdc
DC Forward Current Transfer Ratio $V_{CE} = 2.0 V$, $I_{C} = 0.5 A$	2N176 2N669	h _{FE}	25 75		250	
Power Gain $P_{out} = 2$ Watts, $V_{CE} = 12$ V, $I_C = 0.5$ Amp, $f = 1$ kHz, $R_S = 10$ Ohms, $R_L = 26.6$ Ohms	2N176 2N669	G _{PE}	34 38		<u>37</u>	dB
Total Harmonic Distortion (under same conditions of power gain)			<u> </u>	-	5.0	%
Small-Signal Current Gain Cutoff Frequency V_{CE} = 12 V, I_{C} = 0.5 Amp, f = 1 kHz ref	2N176 2N669	f _{αe}	4.0 3.0	7.0 5.0		kHz
Small-Signal Forward-Current Transfer Ratio V_{CE} = 2.0 V, I_{C} = 0.5 Amp, f = 1 kHz	2N176 2N669	h _{fe}		45 90		
Small-Signal Input Impedance V _{CE} = 2.0 V, I _C = 0.5 Amp, f = 1 kHz	2N176 2N669	^h ie	7.0 10	_	25 50	Ohms

ELECTRICAL CHARACTERISTICS (T_C= 25°C unless otherwise noted)

INPUT CURRENT versus EMITTER DRIVE VOLTAGE (Both Types)

POWER-TEMPERATURE DERATING CURVE (Both Types)

